# CONTROLLING DARK CURRENT IN TYPE-II SUPERLATTICE PHOTODIODES



Quantum Structures Infrared Photodetectors (21 January 2009, Yosemite CA)

C.L. Canedy, I. Vurgaftman, E.H. Aifer, E.M. Jackson, J.H. Warner, J.G. Tischler, & J.R. Meyer, *Naval Research Laboratory, Washington DC 20375*R.R Bailey, G.J. Sullivan, & W.E. Tennant, *Teledyne Imaging Sensors, Camarillo, CA 93212*K. Olver, *Army Research Laboratory, Adelphi, MD 20783* 

S.P. Powell, North Carolina State University, Raleigh, NC 27695



#### **OUTLINE**

- LWIR detection Why so challenging, & what key parameters can we improve with electronic & optical engineering?
- "W"-superlattice absorber for LWIR photodiodes
- Graded-gap "W" for LWIR photodiodes
- Hybrid Photodiodes: TSL/GG-W
- Suppression of surface currents
  - Self-passivation by GG-W
  - Shallow-Etch Mesa Isolation (SEMI)



#### CHALLENGES OF LONG A DETECTION

- Significant challenges in growth/processing of MCT and ABSLs
- Short lifetime (for thermal generation)
- Large thermal population

$$D^* \propto QE/j_D^{1/2}$$
  $QE \approx L_d \alpha I(L\alpha+1)$ 

$$L_d = (D\tau)^{1/2} \qquad D = k_B T \mu I q$$

$$j_D \approx j_D^{Diffusion} + j_D^{GR} + j_D^{Tun} + j_D^{Sidewall}$$

$$E.g.: \quad j_D^{Diff} = qLg_T \rightarrow qLn_i^2/N_A \tau$$

$$At 300 K: > 10^{18} \text{ worse @ 10 } \mu \text{m than 1 } \mu \text{m!}$$



Keys to improved performance:

- $L_d\alpha > L\alpha > 1$  for high QE
- Maximize: ①  $\alpha$ , ②  $\mu$ , ③  $\tau$ , & ④  $E_q$

Because thermal generation rate scales exponentially with  $E_g$ , detection is <u>many</u> orders of magnitude more challenging in LWIR than NIR

G-R & tunneling currents also scale exponentially with  $E_g$ , as does sidewall leakage

## **DIFFUSION CURRENT: MAXIMIZE LIFETIME**

$$j_D^{Diffusion} = qLg_T \rightarrow qLn_i^2/N_a\tau$$

$$n_i^2 = N_c N_v \exp(-E_g/k_B T)$$

Small  $E_{\rm q}$  in absorber is fixed by  $\lambda_{\rm co}$  – So at least maximize  $\tau$ 

Long lifetime minimizes thermal generation rate (& also maximizes diffusion length for high QE)

- Auger lifetime: Enhance with band-structure engineering
  - CCCH processes strongly suppressed because  $m_n \approx m_p$





Shockley-Read lifetime (typically 10-100 ns): Key is high MBE quality





### ANTIMONIDE "W" DETECTORS

Aifer et al., APL 89, 053519 (2006)

#### Type II Superlattice (T2SL)







#### Type-II "W" Superlattice (WSL)



#### **Primary advantages:**

- (A). 2D DOS for more abrupt absorption edge
- (B). Heavier mass for tunneling suppression
- (C). Flexible independent control over CBO & VBO



## (A). LARGE DOS FOR STRONG ABSORPTION



W-QW has much sharper absorption edge than superlattice (Must be careful, because absorption over broad band often more relevant than just at band edge)



## (B). TUNNELING SUPPRESSION

$$j_D^{tun} \propto g_{tun} \propto (m_r/E_g)^{1/2} \exp(-Cm_r^{1/2}E_g^{3/2})$$

Similar for trap-assisted tunneling, but worse because:

$$E_{\rm q} \rightarrow E_{\rm q} - E_{\rm t}$$



InAs/Ga(In)Sb SL typically has 3 x larger electron mass than HgCdTe

Mass in "W" SL much larger than that, tunable with barrier thickness



But we can do better!



## "W" WITH GRADED-GAP DEPLETION REGION

Need to have a small gap in absorber, but not everywhere — Since abrupt shift of  $E_g$  would induce large barrier to minority-carrier extraction, grade the depletion region:





## **GRADING PROFILES**

Grading should compensate internal field in depletion region, which is determined by unintentional background  $p^-$  doping level ( $p_{bq}$ )

If design **underestimates** actual  $p_{bg}$ , induced barrier blocks collection of photoexcited electrons until reverse bias is applied

If design **overestimates**  $p_{bg}$ , CB slopes too soon & narrow gap sees high internal field





# (C). INDEPENDENT CONTROL OVER CBO & VBO



- 3 knobs (InAs, GaInSb, & AlGaInSb thicknesses) allow nearly independent control over CBO,  $E_g$ , & strain compensation (Impossible with 2-constituent SL or MCT)
- No need for challenging mid-growth variations of alloy composition



# Graded-Gap "W" Photodiode for Long-Wave Infrared Detection





### **GG-W PHOTODIODES:**

# SUPPRESSED DARK CURRENTS & HIGH ROA

Nearly-flat I-V implies strong suppression of tunneling, TAT, & G-R currents in GG-W



GGW diffusion limited well below 80K (Note use of  $RA_{eff} = k_B T/q J_{bias}$  for GG-W operating at non-zero  $V_{bias}$ )





# GG-W (RA<sub>eff</sub>) vs. MCT



GG-diode results approach MCT rule07 – poised to move ahead



### "W" LIMITATION - LOWER MOBILITY

Larger  $m_{nz}$  in WSL suppresses tunneling, but with unwanted side-effect of decreasing mobility

Fix: Hybrid, with SL absorber but GG-W depletion region (Also reduces scattering by eliminating 2 interfaces per period, & eliminates Al-containing layers)









#### PRELIMINARY HYBRID SL PHOTODIODES



Initial hybrid structures yield higher QE than GG-W & lower dark current than TSLs, however QE is only marginally better and dark current characteristics inferior to GG-W



#### RECENT HYBRID SL PHOTODIODES



Recent hybrid structures also yield higher QE than GG-W with improved dark current characteristics due to improved designs

Thicker hole well in SL and refinement of bandgap grading for HSL







## SURFACE CURRENT: SELF-PASSIVATION IN GG-W

Sidewall resistivity extracted from  $R_0A$  dependence on Perimeter/Area ratio  $(D = 100-400 \ \mu m)$ 



 $ho_{\rm surface}$  = 4200 – 450,000  $\Omega$ -cm higher than for ANY earlier LWIR T2 results (both passivated & unpassivated), indicating self-passivation in GG-WSLs But it's not enough



# LOWERING THE PASSIVATION BAR: SHALLOW-ETCH MESA ISOLATION (SEMI)

SEMI process, combined with GG-material, completely eliminates all exposure of narrow-gap regions to sidewalls

Passivation of wider-gap material much less challenging





### **SEMI: EFFECTIVE SELF-PASSIVATION**

Burying the narrow-gap region substantially increases the sidewall resistivity



HSL photodetector with  $L = 1 \mu m$ 







## SEMI MINI-ARRAYS: LOWER SIDEWALL CURRENTS



| process | Lmesa(um) | Amesa | Rmesa | Ipix(nA) | Ri   |
|---------|-----------|-------|-------|----------|------|
| Deep    | 37        | 1369  | 1.0   | 410      | 31.5 |
| SEMI    | 37        | 1369  | 1.0   | 13       | 1.0  |
| SEMI    | 30        | 900   | 0.7   | 7.6      | 0.6  |
| SEMI    | 24        | 576   | 0.4   | 5.6      | 0.4  |

4x4 Mini-Arrays (40-μm pitch, Variable junction area)

SEMI dark current scales with junction area, while deep-etched array has much larger  $j_D$ 



SEMI array shows 30x dark-current reduction vs. deep-etched array with same junction area (from same wafer)

Also greater stability of characteristics over time



Surrent Density (A/cm<sup>2</sup>)

#### GG-structures - SEMI AND BULK LIMIT





#### SUMMARY



- Long-λ detection is orders of magnitude more challenging For best D\*, maximize
   QE & minimize various dark currents by using electronic/optical engineering to
   enhance: (1) absorption, (2) mobility, (3) lifetime, & (4) energy gap
- "W" SL combines 2D DOS for high  $\alpha$ , large  $m_{nz}$  for suppressed tunneling, & flexible independent control over CBO & VBO
- Graded-gap "W" strongly suppresses tunneling & G-R currents
- Hybrid (SL absorber + GG-W depletion region) enhances QE ( $L_d \ge 6 \mu m$ ) yet maintains good dark current characteristics
- Surface currents reduced:
  - (1) Increased  $E_{\alpha}$  in depletion region of GG-diodes provides self-passivation
  - (2) Shallow-Etch Mesa Isolation (SEMI) + GG-diodes
    - Eliminates all narrow-gap exposure to etched sidewalls
    - Reduces junction area while maintaining 100% fill factor
    - Mini-array testing: Far lower surface dark currents (sometimes)
       & greater temporal stability than conventional deep etch

To beat MCT, still need to put all the pieces together!

